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The linear Jeans stability problem in a turbulent medium is treated using a 
description of the large-scale motions, with the response of turbulence on the small 
scales being treated using a renormalization approach. This treatment shows how 
turbulence at scales smaller than the potentially collapsing scale builds up a turbulent 
pressure force which effectively resists compression, if the kinetic energy is sufficient 
to balance the gravitational attraction. 

1. Introduction 
This paper examines the conditions for gravitational instability in a statistically 

homogeneous turbulent fluid. The problem of stability of molecular clouds and the 
origin of protostellar density fluctuations is one motivation of this study. 

Jeans (1902, 1929, pp. 345-347) assessed the condition for gravitational stability 
of an infinite homogeneous medium at rest, from the following dispersion equation : 

(1.1) U: - c," k2 + 4.r~Gp, = 0 

where k and we are the wavenumber and frequency of a plane wave linear 
perturbation, c, is the sound velocity, G the gravitational constant and po the average 
mass density. 

Fifty years later, Chandrasekhar (1951 b)  revisited the issue, and wrote (p. 27) : 
' . . . it would follow from the enormous linear dimensions of the systems contemplated 
that the Reynolds number of the ensuing hydrodynamical motion will almost 
certainly be large enough for the medium to be considered highly turbulent. But 
turbulence is not a feature which is included in Jean's analysis. In  view of the 
foregoing remarks it would seem worthwhile to recast Jeans's original arguments in 
the terminology of modern theories of turbulence.' And so he did; he wrote an 
equation of motion for the correlation function of density fluctuations under the 
stirring action of a given solenoidal turbulent velocity spectrum, in the limit of large 
separations; this equation admits spherical waves as a solution, leading to a 
dispersion equation identical to Jean's dispersion relation, except for c," which is 
replaced by c,"+$(vz), where (v2 )  is the mean-square velocity of turbulence. 

Over the past 20 years, radioastronomers have detected cold (T < 30 K) 
interstellar clouds. The classical analysis of Jeans applied to the stability of these 
clouds leads to the conclusion that the thermal gas pressure is insufficient to keep 
them in equilibrium. A t  the same time, the line widths observed show that these 
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clouds are subject to macroscopic motions which carry an amount of kinetic energy 
much larger than the thermal internal energy of the gas, but comparable to the 
potential gravitational energy of the cloud. This coincidence has prompted people 
working in the field to admit that this turbulent velocity dispersion is counteracting 
the effect of gravity, keeping the clouds stable for periods much larger than a free fall 
time, in agreement with Chandrasekhar’s predictions. But then it becomes somewhat 
puzzling that the gravitational instability leading to star formation would operate on 
scales less than the system’s scale. 

To answer this question, Bonazzola et al. (1987) discussed the idea that, as 
advocated by Chandrasekhar, a dispersion equation of the form (1 .1)  should hold in 
presence of turbulence, with a modified c,” (turbulent pressure). That should take the 
following into account: a lump of matter of given size L,  potentially subject to 
gravitational instability, can only feel as microturbulent agitation that part of the 
fluctuation spectrum which occurs at  scales smaller than L. So, the stability criterion 
should not depend only on the total energy in the turbulence, but also on the slope 
of the turbulence spectrum. This leads to the possibility of small density 
enhancements becoming gravitationally unstable within larger units which remain 
stable. Their arguments were based on virial theorem considerations, and on the 
study of a two-dimensional numerical model. 

This called for a more rigorous approach of the problem. In this paper, we study 
the Jeans instability problem in the limit of very long wavelengths (k --f 0 ) ,  trying ‘to 
recast Jeans’s original arguments in the terminology of modern theories of 
turbulence ’, in Chandrasekhar’s terms. The response of turbulence to the large-scale 
compression must then be calculated. To cope with that problem, we have chosen to 
describe their response in the framework of a ‘renormalized’ description of the 
larger-scale motions in the presence of smaller-scale ones. This technique has proved 
its ability to derive accurate results in other hydrodynamical problems (e.g. Yakhot 
& Orszag 1986a, b,  1987). Various versions of it were originally introduced by e.g. 
Forster, Nelson & Stephen (1977), Pouquet, Fournier & Sulem (1978), Moffatt (1983) 
for studies of passive scalar transport, incompressible turbulence and the dynamo 
mechanism in incompressible MHD. After this paper was submitted, Staroselsky 
et al. (1990) used these methods to study compressive turbulence in a gravitationless 
medium, and also reached the conclusion that the effective sound speed is scale- 
dependent. 

Earlier approaches to the self-gravitating turbulent problem include the work of 
Sasao (1973) who improved upon Chandrasekhar (1951 b)  by a consistent application 
of the joint normal distribution hypothesis for the turbulent fields, leading to a 
source term for the density fluctuations which is not included in Chandrasekhar’s 
treatment. Sasao obtained a system of integro-differential equations which were not 
solved. He only looked at one particular source term of density fluctuations, and 
ignored the other effects, which may be important for the stability study. His work 
shows how difficult the complete dynamical problem is. Our own view is also that 
Chandrasekhar’s early approach is not entirely consistent. Our criticisms are to be 
found in Appendix A. Sasao’s contribution, on the other hand highlights only one 
particular type of effect. 

In  this paper, we consider a somewhat different problem, i.e. the response to large- 
scale density perturbations imposed from outside, instead of trying to solve for the 
evolution of spontaneous density fluctuations. Chandrasekhar and Sasao considered 
the time evolution of the correlation of density fluctuations at all scales, while we 
consider the equation of motion of a linear perturbation at  large scale of a steady- 
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state turbulent flow. Our approach ignores other facets of the problem of a self- 
gravitating turbulent medium. These are briefly mentioned below. 

First, the total angular momentum of our system is zero. A system with non-zero 
net angular momentum should be more stable. Second, a turbulent field at  a scale 
comparable to the scale L at which we want to study the gravitational instability 
would constantly redistribute the matter in a larger volume and tend to break 
density fluctuations. If the fluid at  higher density is dispersed before it has enough 
time to collapse (LBorat, Passot & Pouquet 1990), the large-scale turbulent velocity 
field has a stabilizing role. The breaking of density fluctuations into smaller units has 
been studied in detail in a different context by Higdon (1986). 

Third, solenoidal turbulence generates density fluctuations (Lighthill 1952 ; Sasao 
1973). This is certainly important to understand the nonlinear evolution of the 
density spectrum, but not for the problem of stability we consider. Fourth, the 
stability analysis is not complete if the thermal behaviour (for instance adiabatic or 
isothermal evolution) of the system is not known. The Jeans analysis says whether, 
in a uniform infinite medium at rest, a sine linear perturbation will grow or not under 
the action of gravity and pressure forces. But the nonlinear stability of the turbulent 
system with respect to an overall compression, for instance, depends on how apt/+ 
varies with the density. This is a more difficult problem, which may be addressed in 
a future paper. 

Our simpler problem, nevertheless, gives some insight into the nature and the 
effects of the effective turbulent pressure. In fact a result of our study is that the 
change of the turbulent velocity field responding to a local density perturbation 
affects the stability of this density perturbation. The turbulent velocity field at 
smaller scales actually responds to a compression as a pressure Pt, that is, with a force 
- (tIpt/ap) V p  opposed to the gradient of the density. Certainly small-scale kinetic 
energy must show up as some form of pressure (volume density of energy), as is 
intuitive and appealing, when making energy balance arguments. However, the 
concept of a turbulent pressure force, in the sense defined just above is not SO 

obviously meaningful, since there is no obvious reason why the average ( ( u - V ) u )  
should yield a term proportional to (vz) (Vplp). Physically such a relation reflects the 
existence of some positive (or eventually null) correlation between the turbulent 
velocity field and the density field. Note that the absence of a turbulent pressure 
gradient force, in some limit cases would not necessarily conflict with the idea that 
an effective turbulent energy density shows up in the virial theorem. 

We need a generalization of the concept of Jeans stability in a turbulent medium. 
We imagine a steady state of stationary turbulence with some low-wavenumber cut- 
off (Kc) .  We consider a density perturbation at  scale L > 27~/K,. It is enough for our 
purpose to calculate the changes caused in the turbulent fields to first order in this 
density perturbation. This idealization is somewhat unrealistic since probably the 
developed turbulent spectrum would extend up to the largest scales, but necessary 
for clearly decoupling the collapse problem from the more general and nonlinear 
problem of the establishment of the developed turbulent fluctuation spectrum in 
the self-gravitating compressible medium considered. Indeed, when the turbulent 
fluctuations on scale L become of high enough amplitude that the linear 
approximation is invalid for them, the very concept of Jeans stability completely 
breaks down. Therefore, for simplicity, we study an idealized model where the source 
of turbulence is on a scale smaller than that of the potentially collapsing unit under 
consideration, though we keep in mind that in the astrophysical conditions the 
question of gravitational collapse may just be an intrinsically nonlinear one. This is 
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becoming more obvious in view of recent observational data on small-scale structure 
of molecular clouds (Falgarone & PBrault 1988 ; Falgarone, Phillips & Walker 1990). 
Nevertheless the idealized model may shed some light on the role of turbulence in 
controlling the evolution of subregions of gas clouds. 

The dynamical renormalization group technique (RNG) was first introduced for 
the study of the dynamics of critical phenomena (Ma & Mazenko 1975). A number 
of authors, quoted above, applied this technique to specific problems of hydro- 
dynamics, The approach to be followed here is similar to that of Yakhot & Orszag 
(19863) in the sense that we do not apply any rescaling, in order to get the absolute 
value of renormalized transport coefficients. 

In fact, a direct averaging on all scales smaller than any a priori given one is not 
possible when the associated Reynolds number is large, because the use of the first- 
order smoothing approximation (Bourret 1965) is then forbidden. A more appropriate 
way to achieve this global averaging is a recursive procedure of averaging on a series 
of narrow ranges of smaller scales. This recursive elimination of the smaller scales, 
whose effect becomes progressively absorbed in effective transport coefficients and, 
in the present case, in effective pressure, constitutes the essence of the renorm- 
alization technique. The invariance of the form of the new equations obtained 
when a new range of lengthscales is eliminated is a basic justification of this method. 
The equations obtained at  each step are meant to be valid only for motions at  a scale 
larger than those which have been already eliminated. This procedure can only be 
consistent if the renormalized Reynolds number remains small at each step for the 
smallest (remaining) scales. In practice the completion of this programme involves a 
number of other approximations which are difficult to justify, though they are usual 
practice both in hydrodynamics and in the field of critical phenomena (Moffatt 1983). 
These are described in Appendix B. It is still felt that the physics of eddy interactions 
remains at least qualitatively preserved with this procedure. 

2. On the physical origin of the turbulent pressure force 
In this section, we only want to discuss qualitatively the origin of the 

renormalization of the pressure force and viscosity. We consider a turbulent fluid 
subject to a linearizable perturbation at large scale. For simplicity, in this 
preliminary discussion, we ignore gravity. Since the fluid is compressible, it  is 
convenient to use as a variable the momentum density, @ = pv, rather than the fluid 
velocity v .  The equations for the fluid motion are 

a@ @ 

at P P 
- = -v .EL c," vp + (qV. v + (gq + 6) vv. ) -, 

where p is the fluid mass density, c," = aP/ap is the squared sound velocity, 7 and 6 
are respectively the dynamic shear and bulk viscosities. 

We consider a perturbation (p" ,  6) around a stationary turbulent solution (p ,  a). It 
is assumed that the perturbation is induced at some large scale; the response of the 
turbulent field is examined. 

We first want to show in this section, without detailed calculations, how the 
renormalization procedure gives rise to a 'turbulent viscosity ' and a 'turbulent 
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pressure '. The actual implementation of the renormalization programme is deferred 

Let us split the momentum density into a large-scale (superscript L) and a small- 
scale part (superscript s), and assume that the density has only a large-scale part. 
Then the momentum equation can be written 

to $3. 

a@: a@; -+-+V,c,2pL = 
at at 

Separating from (2.3) the large-scale part we obtain 

Expanding the divergence of the effective momentum flux we get 

(@: @ S )  1 
= + @L)2 VjpL--V PL , (@:q). (2.5) 

The two terms on the right-hand side represent the effective pressure and viscosity 
forces. If the second term were treated considering (@: @;) as strictly homogeneous, 
it would vanish, leaving only the first term which would then appear, for diagonal 
(Of@;) ,  as -VPeff, Pel, being some effective pressure. Note that this pressure 
gradient would be opposite to Vp, a rather unusual situation, similar to a negative 
pressure! However the second term of (2.5) does not vanish, because {@:@,") is 
slightly inhomogeneous. We therefore have to calculate its gradient. To do so, we 
solve for the small-scale part @, in the usual first-order smoothing approximation. 

With the present assumptions, namely that the density is only large-scaled, this 
gives 

1 
p L f 3 3  

a@: 'I at + (wF Vj) @ = - @(V, w;) - @y(Vj w;) + 7 A@: + (h + 5)  - V V @', (2.6) 
P 

where we have reintroduced the velocity variable where appropriate. The operator 
on the left-hand side is the time-derivative following the large-scale motion. We can 
formally solve (2.6) by integrating along the unperturbed trajectories of this large- 
scale velocity field. This gives for @;(t), assuming it vanishes at t = - 00, 

+ A  J: d7 @;(t - 7 )  + JOm d7 V, V, @(t - T ) ,  (2.7) 
P P 

where the argument ( t  -7 )  means that the associated quantity is to be taken at a time 
( t - 7 )  and at a spatial position r ( t - 7 )  which, following the large-scale motion, will be 
brought to r at time t .  Since this solution will be used to  calculate a correlation tensor, 
only times shorter than the coherence time of small-scale motions, 7Tcoh, are of 
interest. Similarly, lr(t--7) - r ( t )  I is meant to be shorter than their correlation length, 
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lcoh. Assuming these correlation lengths and times to be much smaller than those (L 
and T) characterizing the variations of the large-scale quantities, the preceding 
equation can be made Markovian by substituting t for (t--7) in any quantity related 
to the large-scale dynamics, as is usual in first-order smoothing. In particular the 
large-scale Lagrangian motion reduces in this approximation to a constant-velocity 
one, and r(t--7) M r - 0 ~ 7 .  Doing this, we obtain from (2.7) an approximate 
expression of the momentum correlation tensor in terms of the large-scale flow 
gradient : 

V, (@f @I") = -V, lom d7 ( @ f ( t )  GI"(t-7)) (V, v,") -V, lom d7 (@f( t )  @:(t--7)) (V, $1 

d-r(@:(t)A@T(t--7))+Vj-d + JOm d7 (@:( t ) V, V, @f( t - -7)). 
PL 

(2.8) 

The averages involved are all isotropic, and can thus be simplified in an obvious way. 
The first two terms on the right-hand side of (2.8) renormalize the dissipative term 
and are contributions to an effective viscosity. The third term is a gradient of a 
quantity depending on the large-scale density variations and will eventually 
renormalize the pressure term, when combined with the first term on the right-hand 
side of (2.5). In a general way, the latter equation shows that the calculation of the 
large-scale dynamics involves that of the response of the turbulent field to the large- 
scale density perturbations. Equation (2.8) which is only a first-order expansion in 
(lcoh/L)  and ( T ~ ~ / T ) ,  shows how this response can be calculated. 

This programme will be completely carried out in $3,  in a linear approximation. 
Since the corresponding equations become somewhat cumbersome, a diagrammatic 
representation has been adopted, which we describe now, with our linearization 
procedure, still retaining the simplified context adopted in this section (no gravity, 
no small-scale density fluctuations). 

Let us write (2.2) symbolically as 

where the two- and three-branch vertices of equations (2.9) are symbolic 
representations of the operators that appear in ( 2 . 2 ) ,  namely 

-1h P 
(2.10) 

(2.1 1) 

Such a symbolic representation, which is not unusual in fluid mechanics, proves 
useful in coping with the general structure of equations, and makes it easier to 
recognize which terms contribute to which turbulent effect. The reader who feels 
better with equations written in explicit form can restore the regular algebraic 
writing by using the definitions (2.10) and (2.11). 
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We shall perform a double separation on the fields p and @. First we separate the 
'background ' from the 'perturbation ', by writing 

(2.12) 

(2.13) 

Then, in each of those we separate a small-scale from a large-scale part. Such a 
decomposition can be used on a Fourier expansion. The large-scale part is that part 
which corresponds to Fourier vectors k such that lkl be smaller than some value, 
Taking the large-scale part of a field (resp. its small-scale part) defines a projection 
operator 9 (resp. Y ). As before, the large-scale and small-scale parts will be denoted 
respectively by a superscript L and S. Note that L corresponds to small Fourier 
vectors and vice versa. For example 

(2.14) 

Q = Qo+& = @t+@+@+@. (2.15) 

We seek an equation for the large-scale part of the perturbation, averaging on the 
realizations of the small-scale part of the background and perturbation fields. The 
perturbation part of (2.2) is obtained by inserting (2.12) and (2.13) in (2.9), and 
subtracting the unperturbed form of this equation. Linearizing for the perturbation, 
this gives 

-+cc,"vp a@ = (="+(=~+(=::+(-~ + (-;* 
1 /Po l/Po 1 3 0  l/Po 

at  

(2.16) 

For brevity, similar graphs resulting from non-symmetric vertices will be 
represented by only one graph. This applies to the first two terms on the right-hand 
side of the above equation. Numerical coefficients will be omitted in the graphic 
equations in this section, since we emphasize only qualitative aspects of the 
procedure. However, all relevant integrals are taken into account with their proper 
weight in the application given in Appendix B. So (2.16) can be written more simply 

The functions in (2.17), in particular those on which vertices operators act, can be 
separated into their small- and large-scale components. 9 being the operator which 
projects on the large-scale part, it gives when performed on (2.17), 
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Each term on the right-hand side of (2.18) can be decomposed into its large- and 
small-scale part in the usual way. Due attention should be paid to the fact that the 
product of two small-scale fields has a large-scale part, which, in terms of Fourier 
analysis, means that the sum of two large-wave vectors may be small. We ignore 
effects due to compressibility on small scales, both in fluctuations and in the 
background turbulence. The effects are taken into account in the complete 
computation of the next section; the presentation adopted here is only meant to 
explain how turbulence responds to perturbations at  larger scale in a simplified 
situation. We also ignore 'near-grid' couplings, by which we mean that the sum of 
two small wave vectors is considered as always small, although the definition given 
for operators 9' and Y would, with full rigour, sometimes regard it as large (see Rose 
1977). Neglecting, as mentioned earlier, ( l / ~ ~ ) ~ ,  we obtain 

(2.19) 

The projection operator 9' should remain in front of the second terms of the right- 
hand sides of (2.19) and (2.20), since the diagrams on which it acts also have a small- 
scale part. However, later on, this will be omitted from the notation, it being obvious 
that a large-scale equation cannot contain a small-scale part and conversely. The 
small-scale part of (2.17) is obtained in the same way; with the same assumptions 
and conventions, i t  can be written 

This can be solved, also using (2.1), for 6' in terms of the right-hand side of (2.21). 
Let us represent the propagator, i.e. the linear operator which solves the linearized 
system (2.1)-(2.2), or equivalently here (2.1) and (2.21), by an arrow. Then we can 
write 

(2.22) 
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Now we substitute this solution into the second term on the right-hand side of 
(2.20), thus obtaining for the large-scale part of the three-branch diagram : 

The perturbed equation for the large-scale part of the flow, (2.18), can now be 
obtained by selectively averaging (2.23) on the small scales, and similar expressions 
in (2.19) and (2.20) as well. In  the spirit of the first-order smoothing approximation, 
which is meant to be 'effectively' valid at each scale, because the effective Reynolds 
number is assumed to remain of order unity at each scale reached by the iterative 
averaging process, we neglect the third-order moments (third term on the right-hand 
side of (2.23). Such a procedure replaces (2.23) by the following: 

where the graphical notation has been adapted by allowing the branches associated 
with the arguments which enter in each vertex to emerge from the vertices in any 
direction; the quantities which are subject to an averaging procedure, denoted by 
angle brackets, have been brought next to each other, causing loops to appear in the 
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diagrams. Proceeding in this same way for all the terms which appear in (2.18) the 
latter can be written: 

<@:@:> <@:w 
(2.25) 

Those diagrams on the right-hand side of (2.25) which involve small-scale averages 
<&q5:) fall into two groups. Two terms turn out to be directly proportional to V p ,  
namely 

+ f ( l / f y  -)-@: + C(l/:)L )-m 
(ElL 

+ <@:@:> 3 (&)" + ( l Z l L ,  (2.26) 

while the other two, namely 

<@: @:) 

C(l/:)L *x-" + c:;:::))(-6L (2.27) 

are obviously the linear approximation to a term which renormalizes the dissipative 
term of (2.2), because they turn out to  act on the product (@/p)  in the same way as 
(2.11). The turbulent viscosity is an average momentum transport effect. It is the 
result of the advective term of the equation of motion, and is similar in nature to the 
effect of renormalized transport by turbulent media, well known in the theory of 
passive transport (e.g. Moffatt 1981) or to the renormalized viscosity associated with 
incompressible turbulence (Forster et al. 1977). 

Equation (2.25) is the linearized form of both (2.9) and (2.5). The four first 
diagrams on its right-hand side are obviously the linearized form of the inertia and 
viscosity terms on the left-hand side of (2.5). The diagram which involves no 
propagator represents the first term of the right-hand side of (2.5). The second term 
on the right-hand side of (2.5) is made explicit in (2.8), the last term of which is just 
the second diagram of (2.26), while the other two constitute an effective viscosity 
term, represented by a second-order operator acting on v ( = Q / p ) .  The two diagrams 
of (2.27) are actually the linear approximation to  this term. 

Iteration of the elementary step just described, down to a wavenumber k, gives the 
turbulent viscosity and pressure entering the momentum density equation for wave 
numbers smaller than k. This programme is completed for the Jeans problem in the 
next section, this time ignoring no relevant terms. Details are given in Appendix B. 

(1 /PI" ,(1/Po)L9 
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3. Explicit renormalization of the Jeans problem 

The hydrodynamical equations of a self-gravitating isothermal fluid are 
3.1. The Jeans problem in a turbulent medium 

(3.2) 
2- a@ @i @5 

at P P P 
- - v, -- v, pc," + rv, v, - + (97 + g) vi v, - + psi +& 

where g is the gravitational acceleration, and F some external source of agitation, 
acting at large scale, other terms are defined in $2. Initial and boundary conditions, 
as well as properties of the external force field stirring the fluid are not considered 
here. We only assume that we have a stationary turbulent solution of these 
equations. The turbulence is assumed to be homogeneous and isotropic. The usual 
convention of summation over the three space components for repeated indices is 
applied throughout the paper. 

If the nonlinear terms are neglected we can obtain the dispersion equation for the 
density fluctuation p1 e-iwkt+'k.x around a hypothetical static equilibrium con- 
figuration of uniform density po extending to infinity (although this is not justified 
unless the medium is an expanding universe, as in Jeans' 1902 paper): 

1 

Po 
ui-c,"  k2+iuk k2- (% + y) +4nGp, = 0. (3:4) 

From this equation it is seen, as is well known, that the equilibrium is unstable if the 
wavenumber modulus k of the perturbation is less than the Jeans critical 
wavenumber kJ : 

where SZ, is the Jeans frequency, related to the average density, po, by 

k; = s2;/c,2, (3.5) 

SZ, = (4nGp0);. (3.6) 

As explained in the introduction we may ask what happens in the presence of 
turbulence. When discussing a stability problem we have to define a reference state 
around which the evolution of the perturbations can be studied in the presence of 
turbulence ; we imagine a steady state with stationary turbulence. 

Such stationary states must be maintained by some sort of forcing, which need not 
be described in any detail. We simply assume that a random force field covers a range 
of spatial scales from some wavenumber K ,  to infinity, and we assume that K ,  is 
much larger than the wavenumber k of the perturbation of interest. For such an 
external force spectrum, the velocity field spectrum develops below the cutoff, K, ,  a 
low-wavenumber spectrum in k4, which falls off quite rapidly when the wavelength 
grows larger (J.  LBorat, private communication). As a result, the dominant 
contribution to the motions at wavenumber k can indeed be attributed to the 
perturbation that we are going to study, rather than to the low-frequency tail of the 
stationary turbulence spectrum. The Jeans number, K,, is of course also assumed to 
be smaller than K,, as is also the wavenumber of interest, k. This is represented in 
figure 1. 
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FIGURE 1. A qualitative sketch of typical turbulence spectra for the compressive part (dashed line) 
and solenoidal part (full line) of the velocity field. This latter part peaks at a wavtpmber where 
turbulence is supposedly excited. It extends towards larger wavenumbers as a k3-spectrum and 
towards lower ones as a k4-spectrum. The compressive part has a slope smaller than the 
incompressible one at large wavenumbers (LBorat et al. 1990) and dominates at k > K, (vertical 
dashed line). It is dominated at small k by the incompressible part (Staroselsky et al. 1990). 

1% (k) 

To perform explicit calculations we also need to introduce some assumption 
concerning the ftequency spectrum of velocity fluctuations. For a given wavenumber 
p ,  we assume that the temporal frequency spectrum is a function which peaks at 
some low frequency, a,, (which could be zero). This frequency is assumed to be 
independent of p .  The spectrum then takes significant values only in a range of 
frequencies lower than the corresponding 'effective ' sound wave frequency relative 
to wavenumber p .  Under this assumption, the exact shape of this temporal frequency 
spectrum is irrelevant. Hence, the assumed independence of 52, of p is not expected 
to yield singular results either. In fact the general form of the equations obtained in 
9Q4.1 and 4.2 is independent of this particular assumption, different dependence of 
9, on p would alter some of the numerical coefficients which appear in equations like 
(4.2), (4.5) or (4.8). Physically this means that the temporal behaviour at  a given 
spatial wavenumber is dominated by advection, with a velocity smaller than the 
effective sound speed, rather than by sound propagation effects. Then 52, and K ,  
should be related by a relation like 

where V,  is a typical advection velocity given, in terms of the space-time power 
spectrum of the velocity field, by an expression like 

+m 

V,Z w K, 1 V2(K,,  w) dw. (3.8) 
-m 

The Jeans frequency 52, = c,K, is much smaller than 52,. We shall consider the 
response of the turbulence to perturbations at small frequency w, smaller than both 
52, and 52,. 

It is convenient to define a variable 4 having dimension of velocity by dividing the 
momentum density @ by the average density of the system po, 4 = @/Po. Fourier 
transforms, denoted by a hat, are defined as, for example, 
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For compactness we introduce Fourier 4-vectors : 

k = (k,, k,, k,, w ) ,  

dk = d3kdw. 

(3.10) 

(3.11) 

When special mention is made of frequency associated to 4-wave vector k, the 
frequency will be denoted wk. But this does not imply any kind of dispersion relatiop. 
We define the transverse and longitudinal components of the spectrum of the 
variable q5, Y'(p,up) and !Pll(p,wp) as 

(3.12) 

Numerical simulations of supersonic turbulence (Passot, Pouquet & Woodward 
1987) have shown that in dimension-2, the spectrum of the transverse component is 
steeper than the spectrum of the longitudinal component. We assume that the three- 
dimensional turbulent flow that we consider has the same property. K ,  is defined 
such that compression dominates at wavenumbers larger than K,. The assumption 
made in this paper of small density fluctuations implies that the integral over p and 
w p  of !PlI(p,w,) is smaller than the thermal energy c,". As we also assume that the 
turbulence contains a significant amount of energy, the integral of !I7'@, w p )  will be 
larger than that of !Pll(p, up). It is thus reasonable to assume that Y* will dominate 
the spectrum for all wavenumbers except those larger than K ,  which contain only a 
small fraction of the turbulent energy. 

3.2. Equations in Fourier space, and graphical representation 
In order to apply the renormalization procedure in the next section, the general 
equations (3.1)-(3.3) must be written in Fourier space. To get rid of the l /p  
nonlinearities, the equations will be considered in the low-Mach-number regime 
where the density fluctuations np, around the space-averaged value po are small. To 
order n2, the equations take the form 

%/at = - v, #,, (3.13) 

- - - - V ,  #, #,( 1 -n+n2)  -V, nc," + u, V,V, #i( 1 - n  +n2) 
at 

+pov ,  v, $,(I -n+n2) + (1 + n )  gr+f t ,  (3.14) 

V,g, = - Q i n ,  (3.15) 

where 52, is the Jeans frequency, as above, and the momentum density @ has been 
divided by p,, as explained above, as have the force field F and the dynamic 
viscosities 7 and 6. The new variables #,$ have the dimensions of a velocity and an 
acceleration respectively, and uo and po  have the dimension of kinematical viscosities : 

(3.16) 

(3.17) 

Although the bulk viscosity is assumed to vanish in the original equation, we keep 
a second independent viscosity coefficient po in order to  allow for the growth of 
turbulent bulk viscosity in the renormalization procedure ($3.3). 
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The solution of the mass conservation equation in Fourier space is, simply, 

f i  = dj kj/wk. (3.18) 

Substituting f i  in the Poisson equation fields gives 

(3.19) 

Substitution of f i  and in the momentum equation (3.13) gives an equation where 
only q5 remains. Nonlinear terms of third order are kept for consistency in the further 
developments. Nonlinear terms of higher order are dropped. The momentum 
equation then becomes 

gijl(k) dj(k) = ~ ( k ) + A l d p d q d @ + q - k ) 2 i l ( k , q , q )  dj@)A(q) 

+A'SdpaPdrd@+q+r-k) q j l r n ( k , P , q , r ) d ~ @ ) d z ( q ) d ~ ( r )  (3.20) 

with the definitions : 

Sijl(k) = (-iwk+vok2) 

qjl(k,p, q )  = ikj di, +- Qz (v, k2dij+,u, ki k j )  + i Q : m  s, 
wq wp P 2  wq 

qjzrn(k,p,q,r )  = ik j8 , , - -vok2di j - - - ,uOkik j - - .  rrn Q1 rrn Q1 rrn 
0, wq wr wq 0, 

(3.21) 

(3.22) 

(3.23) 

A is a constant, equal to 1, explicitly written in order to keep track of the order in 
nonlinear couplings in the perturbation development. 

Representing now the propagator Y with a line with arrow, the second-order 
nonlinear couplings with a vertex with two outgoing branches, and the third-order 
nonlinear couplings with a vertex with three outgoing branches, equation (3.14) can 
be written graphically as: #=-,-c: + +;. (3.24) 

The wave vectors and frequencies must follow conservation laws a t  each vertex, i.e. 
the incoming one must equal the sum of the outgoing two or three. 

Let us now consider a small perturbation to the stationary momentum and force 
fields. The perturbed quantities verify, in a linear approximation, the following 
equation 

i =-f+ 

where the perturbation is represented with a 
density field is considered here as known (at  

+ +-:. (3.25) 
4 

tilda. The unperturbed momentum 
least statistically), and the original 
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dynamical problem is transformed into a simpler kinematical problem of passive 
transport with several vertices. 

3.3. Application of the renormalization procedure 
The computation corresponding to one elementary step of the renormalization 
procedure is presented in detail in Appendix B, in practice for the first step. Starting 
from the perturbed equation (3.25) for wavenumbers in the range k < A ,  this step 
leads to similar equations for wavenumbers in the range k < Ae-l, where the effects 
of turbulence in the range Ne-' < k < A (high wavenumbers), at lower order, appear 
as corrections to the coefficients c,2, vo and po of the new equations. For clarity these 
renormalized coefficients will be written vt, pt and ct = apt/i3pP- 

The corrections obtained for one step are listed in Appendix B. These corrections 
depend on frequency integrals of the spectrum of the momentum density I;Z(p) and 
I!@) defined as 

432)) = dwwnY-l(P,  w ) ,  (3.26) 

I!@) = d w w n w P ,  01, (3.27) 

where Y-l and 5211 are the transverse and longitudinal components of the spectrum of 
the momentum density, already defined. 

As long as the relation 
52: < v;p4 (3.28) 

is valid, which is so under the assumptions previously made on the spectrum (see text 
before (3.7))) the leading correction terms are given by the expressions 

(3.29) 
2 
-I,' dP,  s A e - '<p<  A 

Act = 

(3.30) 

(3.31) 

A52: = 0. (3.32) 

The procedure has to be iterated N times, down to A epN2 - K,. The final equations 
are of the form (3.2) but apply to the flow restricted to wave numbers 0 < k < K,, 
consistent with the fact that we want to discuss the response of the system in the 
limit of small wavenumbers and frequencies. This however does not fully justify the 
fact that the small wavenumber and frequency limits are taken much earlier in the 
procedure. It is assumed that the intermediate equations actually remain valid on a 
much larger range of wavenumbers and frequencies. 

As shown in the papers which inspired this calculation (Forster et al. 1977, and 
papers quoted in the introduction, it is convenient to approximate the recurrence 
equations obtained as differential equations in p ,  where p - Ae-nz is the wavenumber 
up to which the averaging procedure has been currently carried out. Rose (1977) 
computed corrections to the diffusion coefficient for passive scalar transport 
including near-grid effects : he shows that the result depends on the thickness of the 
shells and claims that thin shells probably give a more accurate result. 
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Introducing coefficients Ck, N i ,  MA and Ch, NA, ML which are functions of vtp2, 
,utp2, ctp, and a;, with n = -2 ,0 ,2 . .  . (see (B 16) to (B 21) in Appendix B), these 
differential equations are found to take the form: 

c ci ( V t  P2> rut P2> ct P, a;, Ii @I, (3.31) 
dc2 2 
-2 = ?It@) + 

dP f-l,II, n --2,o. . . . 

(3.36) 

The minus sign in front of the derivatives comes from the fact that the 
renormalization proceeds towards smaller wavenumbers. Integration of these 
equations down to p = K, gives the renormalized coefficients vt, pt and ct that enter 
the perturbed equations of motion of the form (3.25), which apply to the flow 
restricted to wavenumbers 0 < k < K,. Note that the Jeans frequency is not 
renormalized. The consequences of the new equation are analysed below. 

4. Analysis of stability 
4.1. Case with no gravity 

We first examine the behaviour of the renormalized propagator without gravity, 
where the system is expected to be stable. In this section we show that our result is 
consistent with the expectations. The renormalized c: and viscosity coefficients in 
this case are obtained from (3.33) and (3.34), when a, = 0. 

4.1.1. Turbulent pressure 
Equation (3.33) without expansion in w p  can be re-expressed explicitly as 

In all cases the solenoidal component of the momentum density field increases c? by 
gk, very much like the thermal motions build up the thermal pressure. The potential 
component adds a correction of between +gi and -g!. The possibility arises that 
ct decreases with decreasing wavenumbers, a t  small scales where the compressible 
component may be important. However, when ct approaches zero, the coefficient of 
I!@) becomes positive and prevents c: from getting negative. At  this point we recall 
that we have assumed in $3.1 that compressibility effects dominate only at  
wavenumbers larger than the crossover K,, so that, for wavenumbers smaller than 
K,, ct will necessarily increase monotonically, and can be written in this scale domain 
a5 

ct@) = - dr (U; ( r )  -I!( r ) ) + c:(K,). 

In  the limit p-+O this integral is not simply f < q P ) .  
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4.1.2. Turbulent shear viscosity v, 

The correction to the shear viscosity V, is written, in the case c,"(p) > s2,2/p2 

As shown above c,2 can never vanish, but may get very small. In the limit 
c,2+0 this equation is written 

(4.3) 

where 

(4.4) 

Note that even in the wavelength range where the compressible part of the velocity 
field dominates, any decrease of the viscosity due to the negative correction which 
appears in the case c,2 + 0 will produce an increase of the positive term of the right- 
hand side of (4.4). As a consequence vt is bound to stay positive. For wavenumbers 
smaller than the crossover, the viscosity will increase monotonically, and can be 
written 

Note that the absolute value of the exponent in the above integrals is always less 
than 

which is equal to $ of the relative density fluctuation (n') (see (3.18)). Under the 
assumptions of $3.1, this quantity is always much smaller than 1, and then the 
exponentials are of order 1. 

4.1.3. Coeficient y, and related turbulent bulk viscosity 
The coefficient yt of the ki k j  term is simply related to the viscosity coefficient for 

compressible modes, which is V, +yt, and to the bulk viscosity, equal to yt-fvt. The 
coefficient y, obeys the following differentia1 equation : 

For wavenumbers smaller than the crossover, this coefficient will increase 
monotonically with decreasing p, and can be written 

A comparison of (4.5) and (4.8) shows that Iytl remains always smaller than v,. A t  
small wavenumbers, where the terms inI: are dominating, it is easily seen from (4,3) 
and (4.7) that the coefficient y, tends to -&,. Although the bulk viscosity ,ut-4vt is 
negative, the viscosity coefficient of the compressible modes, vt +pt, remains positive 
for any wavenumber. No instability can be generated by the viscous terms. No 
inverse cascade is expected. 
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4.2. General case, Jeans stability 
We consider now the results including gravity. We point out that the Jeans 
frequency is not affected by the turbulence : 

dDi/dp = 0. (4.9) 

The corrections to ct and viscosity coefficients are slightly affected. In the case of 
positive (c," p 2  - 0:) : 

(4.10) 

Instabilities can occur at large wavenumbers. As in $ 3.1 we consider wavenumbers 
below the crossover K,, where the turbulence spectrum is dominated by 
the incompressible field. Below K,  the correction to c," is dominated by the first term 
on the right-hand side of (4.10). As in $3.1, c," keeps increasing, and the terms in 
(Q:/(ctp2 - 52:) vanish. Integrating the remaining terms, and with the reasonable 
assumption of a constant value for ,ut/vt (see $4.1.3), we get 

Let us now turn back to the linear analysis of the gravitational stability of large 
scales (k < K,) introduced in $2. We use the new equation of form (3.25) with the 
coefficients of the propagator replaced by the renormalized ct  and renormalized 
viscosity coefficients computed for p = K,. The dispersion equation (3.4) now 
becomes 

W;-C,"(K,) k2+iukk2(vt(K,) +,ut(K,))+SZ: = 0. (4.12) 

This is formally the same dispersion equation as that obtained in the static case (3.4). 
Obviously turbulence acts as a stabilizing agent against self-gravity. 

In order to be able to proceed analytically we had to assume that the turbulence 
was restricted to scales smaller than the scale k for which we wanted to assess the 
gravitational stability. However we conjecture that a similar result would hold at a 
scale k within the turbulent range. In this case the integration has to be stopped at 
k and the equation of dispersion is written: 

w ~ - k 2 ~ , " ( k ) + i ~ l C k 2 ( ~ t ( k ) + , u t ( k ) ) + S Z :  = 0. (4.13) 

This is just the equation discussed in our previous paper (Bonazzola et al. 1987), 
which had been justified there on the basis of two-dimensional numerical analysis. It 
is satisfactory to find here this same equation again as a result of a more deductive, 
though approximate, process. 

We present in figure 2 comparison of the dispersion relations for Jeans waves from 
various treatments of the turbulence. Figure 2 (a )  shows the plain Jeans result, with 
non-renormalized sound speed, while figure 2 ( b )  represents the solution of the same 
problem with renormalized pressure, but ignoring the effective viscosity of 
turbulence. Finally figure 2 ( d )  shows the solution of (4.13), with all the effects 
included. As expected the main effect is the big widening of the stability range when 
the effect of turbulent pressure is taken into account. Figure 2(c) shows that the 
turbulent viscous effects, which should be included for consistency, alter this main 
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FIGURE 2. Dispersion relations for the Jeans problem. The dashed line represents the real part of 
the frequency and the solid line is the growth rate. They are normalized to the Jeans wavenumber 
and frequency. The abscissa on these plots is the wavenumber, normalized to  the nonturbulent 
Jeans length. (a) Classical Jeans dispersion relation, i.e. with thermal pressure only included. (b) 
Dispersion relation including gas and turbulent pressure only. (c) Dispersion relation according to 
our (4.12), including gas and turbulent pressure, and both kinds of turbulent viscosity. (d )  
Dispersion relation according to the conjecture expressed by (4.13), i.e. with scale-dependent 
turbulent viscosity and turbulent pressure. The spectrum of the divergence-free component of the 
velocity is assumed to be a power law cc k-d with a = 4, larger than the critical value a = 3 (cf. 
Bonazzola et al. 1987). Two regimes of stability appear. 

effect only in quantitative aspects, near the threshold for example, and add extra 
stability. 

5.  Conclusion 
Our goal here has been only to study the effect of compressible turbulence on 

gravitational stability at  large scale, not to build a model of compressible turbulence. 
We have studied the linear stability of a self-gravitating turbulent fluid using a 
renormalization technique. We have shown that, under the assumptions on the 
turbulent spectra made in $3.1, the effect of the response of the small-scale 
turbulence to the large-scale perturbation (in the limit k -+ 0, w + 0) can be described 
in a new equation applicable only to large scales, by a renormalized c; and 
renormalized viscosity coefficients vt and pt, which replace the ordinary quantities of 
the general equation. We have also shown how the effective viscosity itself 
contributes to the renormalization of the pressure. For spatial and temporal scales 
much larger than those of the turbulent spectrum considered, our result shows that 
pc," = pi3&/ap is equal to ?j of the energy density of the transverse motions, in 
complete analogy with the kinetic pressure. The longitudinal motions contribute at 
most 8 of their energy density. In  the plausible case of turbulence dominated at large 
scales by the incompressible flow, the turbulent pressure is essentially provided by 
this flow. 
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Under the assumptions adopted, we have shown that the Jeans stability problem, 
obeys, a t  large scales, a dispersion relation which includes renormalized pressure and 
viscosities. Our results justify the introduction of turbulent pressure in the discussion 
of gravitational stability and exhibit its stabilizing role against gravitational 
collapse. As explained a t  the end of $4, an extension of these results to scales within 
the turbulent range will make these quantities scale-dependent, and lead to the 
dispersion relation proposed in our earlier paper (Bonazzola et al. 1987), which 
receives here some more basic justification. The consequences of this ‘ renormalized ’ 
dispersion relation, which are numerically illustrated in our figure 2, confirm the 
conclusions of the above quoted paper concerning the stability properties of 
turbulent clouds. 

Some further aspects which might deserve some attention are related to 
characteristic timescales. Our calculations assume that the free-fall time, as well as 
the typical timescale of the perturbation considered are both very large when 
compared to  the turbulent characteristic timescales. Preliminary results of new 
numerical simulations indicate that the turbulent pressure requires a minimum time 
to  be established (this is the dynamical timescale of the turbulence). It should also 
act for a time that should be limited, because the turbulent flow would leak, by 
diffusion, out of the region of fluid where it is present a t  time t .  A consideration of 
such effects, which bear on the turbulent energy content, would require the solution 
of the full nonlinear problem. 

To discuss the collapse problem in terms of the development of a linear 
perturbation on a state unperturbed a t  large scales by t,urbulence, we had to assume 
a complete separation of spatial scales between the turbulence spectrum and the 
collapsing unit. This limitation is likely to be removable but, then, the ‘linear Jeans 
stability ’ formulation will not be adequate any more, because the unstable motions 
at the scale of the collapsing unit will interfere with the bulk of the turbulent motions 
and a linear stability analysis will not make sense any more. The scope will thus have 
to  be radically changed to  the consideration of self-gravitating, compressible, 
developed turbulence. Though this is quite obvious, we think that our approach has 
made this point very clear. As stated in the introduction in this case the problem 
involves other aspects, namely the role of timescales mentioned above, the generation 
(Sasao 1973) and disruption (Ldorat et aE. 1990) of density enhancements by the 
shearing flow itself. 

Other aspects of compressible turbulence have been treated in the literature 
(Higdon 1986; Henriksen 1986; Hartke, Canuto & Alonso 1988), but a complete 
treatment of gravitational instability in the presence of turbulence is still lacking. 

It is a great pleasure to thank A. Pouquet for encouraging us to  persevere in this 
study, H. K. Moffatt for sending a copy of his work on the RNG technique applied 
to  hydrodynamics, and S. Fauve, R. Henriksen and D. Hollenbach for comments on 
early versions of the manuscript. 

Appendix A. Remarks on the papers by Chandrasekhar (1951 a, b) 
Chandrasekhar (1951 a, b )  obtained an equation for the time evolution of the 

density correlation which includes a turbulent pressure term. Sasao (1973) notes that 
Chandrasekhar did not consistently use the hypothesis of joint normal distributions, 
and ignored terms among which is Sasao’s term for the generation of density 
fluctuations. We think that there is an additional point to make. 
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In his equation (19), Chandrasekhar (1951 b )  also neglected additional terms (in the 
limit r e  a), and we feel that he did not do that consistently: he dropped all terms 
involving velocity correlations, but kept a particular term which adds a turbulent 
pressure to the thermal pressure. The resulting equation for the density correlation 
is then his equation (20). In  fact, the neglected terms are larger than this single term 
because 

1 - ( w2) ( Sp2) Cpp(r), 

where C ( r )  and Cvtv,(r) are the correlation functions of the density fluctuation Sp 
and velocity field v respectively, as a function of distance r ,  & being the components 
of r .  These correlation functions are related through the linearized continuity 
equation, in Fourier space, for pulsation w ,  and wavenumber k :  

pp. 

wSb(k) N ( p )  k*ir(k) 

so that (Sb(k) @*(k)) - k2/w2 ( p 2 )  ( d ( k )  d*ll(k)), 

where w I I  is the compressible part of the velocity field. If k 2 / d  = c," (sound waves), 
and using the fact that 

(v"ll(k) G*ll(k)) - (v"/c," (qk) .;*(k)) 

we deduce after inverse Fourier transformation 

This implies that equation (A 1) is approximately equal to (A 2 )  multiplied by 
(w~)~/c,", meaning that in the subsonic case, considered by Chandrasekhar, the 
neglected term is larger than the one retained. 

To the same approximation level terms like (Sp Sp') (wi w;) and (pv;)  (pw;) = 
(Sp v;) (Sp u;) should be neglected, and the asymptotic equation for the density 
correlation (equation (20 )  of Chandrasekhar 1951 b)  should be read 

a a  
a t 2  a& at* 

= 2 4  A (Sp Sp') + 87~G ( p )  (Sp Sp') -2- - ( P ) ~  (w: vj'), a2 (SP SP') 

where w1 is the solenoidal part of the velocity field. This equation is quite different 
from the equation discussed by Chandrasekhar. 

In  Chandrasekhar (1951~)  the viscosity terms are discarded in a similar way 
(Chandrasekhar's (34)) leading to a wave equation for the density correlation 
without viscous damping, regardless of the value of the viscosity. This is, we believe, 
a non-physical feature of the mathematical development. 
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Appendix B. Renormalization of the Jeans problem with turbulence 
B. 1 .  Description of the renormalization procedure 

The starting equation is (3.25), which we rewrite here with explicit mention of the 
wavenumbers : 

In  this equation the perturbed quantities are 

(B 1) 

represented with a tilda; the arrow 
represents the propagator, the vertices represent-the nonlinear couplings of second 
and third order respectively. I n  Fourier space the vertices give convolutions over 
wavenumber and frequency. The expressions for the kernels are given in (3.21)-(3.23). 

As explained in 5 2 this expression represents the linear perturbation development 
of (3.14) in Fourier space. Equation (3.14) was obtained from the conservation 
equations (3.1)-(3.3), by dropping nonlinear couplings of order strictly larger than 3; 
terms of order 3 are kept because they give contributions of the same order of 
magnitude as terms of order 2 in the perturbation development a t  lowest order. 

We now proceed with the separation in two scales as explained in $2. The 
equations for low (k < Ae-') and high (Ae-' < k < A )  wavenumbers, respectively 
represented by L and S superscripts, are 

g" - =-p+ <-;+ 4-@ p 

+ -~;++;++;+-t" 
+(-;+4-;"+4-;+- <-; 

+.+- ; + += ; + -+- ; + +-! 

gL7 (B2) - p = 

@ 

(B 3) 
The integrals corresponding to  the vertices have been split on different integration 
domains, p < A e-l and A e-l < p < A .  As the expressions for the vertices given in 
(3.22) and (3.23) are not symmetrical, care has to be taken in the choice of the domain 
of integration. Note that this problem does not appear in the incompressible 
hydrodynamics considered by Forster et al. (1977), where the corresponding vertex 
is symmetric. A simple way to deal with this problem is to  symmetrize the 
expressions of the vertices with respect to  the outgoing branches. 
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In  writing (B 2) and (B 3) we dropped the near-grid coupling, for example terms 
like 

C f:’ (B 4) 

in the high-wavenumber equation, or 

c-” 
L 4” 

in the low-wavenumber equation. A correct treatment of the effect of near-grid 
coupling would involve a numerical treatment of averaging integrals (Rose 1977), 
which we do not feel worthwhile in the present context. It is usually conjectured that 
the essence of the physics of the eddy interaction remains at least quantitatively 
preserved despite this. 

A second bold approximation consists in simplifying the integration domains in 
the computation of vertex integrals. For example the convolution of quantities of 
high wavenumbers p and k - p  should be made with: Ae-‘ < p < A and A e - l <  
Ilc-pl < A .  But only the condition Ae& < p < A is kept. This condition is obtained 
by Forster et al. (1977) by a change of variable p’ = p - i k ,  with Ae-l < p’ < A .  But 
this is correct only in the limit k+O. It is not obvious at all that it is permissible to 
take this limit before making the computations. 

The presentation adopted by Moffatt (1983) consits in assuming a discrete 
spectrum concentrated around wavenumbers k,, k,, . . . , k, with k, B k2 B . . . k,. This 
avoids the difficulties related to the near-grid coupling and the change of variables. 
But in the continuous case, representing the spectrum with such a discrete sampling 
is another bold approximation. 

We obtain a lowest-order solution of (B 3) by keeping only the first two terms, as 
the other ones involve the perturbation at large wavenumber, or include 
nonlinearities a t  large wavenumber : 
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Replacing the perturbed momentum density at high wavenumber in the equation for 
low wavenumber by this solution gives, at order h2 in nonlinear couplings, 

p =++4-; ++-; +.+-; P 

<-(-:+<-[++ (--; 

-LI-f 0" (B 7) 

+ Q 

4s 9" 4L 
P 
4L 
#s 

4s + 

Averaging for higher wavenumbers we are left with the following terms: 
- qv = 

-p+ 4" + 

(@ $9 (@ $9 (P $9 
+ +( = )(-;;-tp= % P + - t g L ;  xp 

+ L* 
(B 8) 

This is a first-order smoothing approximation, which consists in dropping terms like 
qb$- ($4). This approximation is adequate if the effective Reynolds number for the 
large wavenumber is small. 

Using the formal development of $ 2  we know that the graphs correcting the 
vertices simply give corrections t o  nonlinear terms coming from the development of 
l / p  with the same coefficients. It is sufficient to compute the linear corrections: 

(Q $9 

(B 9) 

The double 4' represents the correlation function of momentum (3.12) for high 
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wavenumbers. Multiplied by the inverse of the propagator (represented by an 
arrowed line, with - 1 on top of it) the low-wavenumber equation can be written: 

<Q $9 
- 1  F - 0  - 

= p +-(-.;; + .+-I; q5L. (B 10) 

The two surviving graphs appear to be subtractive corrections to the inverse 
propagator. This new equation has the same structure as the original equation (3.25). 
The two differences are a wavenumber range reduced to 0 < k < A ecz and a modified 
propagator. The corrections to  the propagator are computed in 5B.2. The pressure 
and viscosity are replaced by turbulent coefficients including the effects of turbulence 
a t  wavenumber higher than A e-l. 

In  the cases where the corrections increase the viscosity sufficiently, the effective 
Reynolds number a t  k = Ae-l is decreased to a value sufficiently low so that the 
whole procedure may be repeated for wavenumbers 0 < k < Ae-l, with a new 
separation between small (0 < k < A ec2l) and large ( A  eT2l < k < A e-l) wave- 
numbers. The operation is iterated until all turbulent wavenumbers down to K,  have 
been swallowed in the progressive average. 

B.2. Computation of the lowest-order graphs 
The graph: 

must be read as 

must be read as 
n n  

The propagator is the inverse of (3.21) and the vertices are obtained by symmetrizing 
(3.22) and (3.23) with respect to the outgoing branches. 

These integrals can be computed analytically in the limit of small k and ok under 
the following assumptions. The integrand is developed up to order k2.  The integral 
over angles is performed under the assumption of isotropy. Knowledge of the 
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frequency dependence of $' and $11 is necessary to perform the frequency integration. 
We chose a spectrum strongly peaked at  frequency O,, allowing expansion in powers 

All correction terms obtained under these assumptions may be grouped as factors 
of i/wk ki ki, k2aS,, or k, kj. They are interpreted as modifying either the pressure c," or 
the viscosity coeficients vo and po, which are factors of the same quantities in the 
expression of the inverse propagator (3.21). There are no factors of ( i / w k )  ( k 2 ) / k ,  k j ) ,  
and- thus no correction to the Jeans frequency. The correction to the inverse 
propagator reads 

of w p .  

(B 15) 
i 

A%,'(k) = Act - k, k j  + Avt k2Sij +Apt ki k j .  
wk 

The corrections are expressed as functions of frequency momenta of the spectrum, 
I;@) and I:@), defined in the main text. For each of the three corrections, the two 
highest-order non-vanishing terms for each of Ii(p), Ia(p), and Oi Ik@) contributions 
are kept. It is recalled that I!,(p) is proportional to the power spectrum of density 
fluctuations : it remains finite. 

In the limit where Q, is much smaller than vtp2, ptp2 and ctp, we obtain for each 
of the three individual corrections 

8 1  
15 vtp2 

Av, = --I1@)+ 

In the case where ct would go down to very low values (this might happen if 
compressible motions are dominant a t  small scales), the above expansion is not valid. 
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Therefore, we also compute the corrections in the limit where Sz, is much smaller than 
vtp2,  p tp2  but c tp  is much smaller than Sz,. We find instead 

2 4 1  1 2 1  
Act = - I i @ ) - - ~ I ; @ ) + - I ~ ( p ) - -  2 ,I!@) 

3 3 V t P  3 3 (vt+Pt) P 

-‘(a+$t)Sz: 3 I!&)+ 15 v?p4 +- 5 ( v , + , ~ ~ U , ) ~ p ~  (B 19) 

1 6 1  2 1 
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